Orthogonal Series' of Absolute Banach Summability

Pawan Saxena, Madhukar Sharma, Dinesh Kumar Sharma, Gopal Pathak

Abstract

In this paper we have proved a theorem on "Orthogonal Series' of Absolute Banach Summability" which generalizes known result. However our theorem is as follows.

Theorem: Let $\{\Omega(n)\}$ be a positive sequence such that $\left\{\frac{\Omega(n)}{n}\right\}$ is a non-increasing sequence and the series $\sum_{n=1}^{\infty} \frac{1}{n \Omega(\mathrm{n})}$ converges and $\int_{0}^{\pi} \frac{d \phi_{n}(t)}{t^{v}}<\infty$
then the orthogonal series $\sum_{n=1}^{\infty} a_{n} \phi_{n}(x)$ is $|B|$ summable at $t=x$, provided

$$
\sum_{k} k^{\beta-1}(n+k)=O(n \Omega(n))
$$

Where $0<\beta<\gamma<1$.

2000 Mathematics subject classification : 40D25, 40 E25,40F25, 40G25.
Keywords and Phrases : Norlund Summability, Banach Summability, Summability.

I. DEFINITIONS AND NOTATIONS

1. Let $\left\{S_{n}\right\}$ be the sequence of partial sums of a series $\sum a_{n}$. Let the sequence $\left\{t_{k}(n)\right\}_{k=1}^{\infty}$ is defined by

$$
\begin{equation*}
t_{k}(n)=\frac{1}{k} \sum_{v=0}^{k-1} s_{n+v} k \in N \text { if } \tag{1.1}
\end{equation*}
$$

$$
\lim _{k \rightarrow \infty} t_{k}(n)=s \quad \text { a finite number }
$$

Uniformly for all $n \in N$, then $\sum u_{n}$ is said to be Banach summability to s.
Further if,
(1.3) $\quad \sum_{k=1}^{\infty}\left|t_{k}(n)-t_{k+1}(n)\right|<\infty$

Uniformly for all $n \in N$, then the series $\sum u_{n}$ is said to be absolute Banach summable or simply $|B|$-summable.
2. Let $\left\{\phi_{n}(x)\right\}$ be an orthogonal system defined in the interval (a, b). We suppose that $f(x)$ belongs to $2!(a, b)$
and $f(x) \sim \sum_{n=0}^{\infty} a_{n} \phi_{n}(x)$ by $E_{n}^{(2)}(f)$, we denote the best approximation to $f(x)$ in the metric of 2 ! by means of polynomials

$$
\sum_{k=0}^{n-1} a_{k} \phi_{k}(x) \text { i. e. } \quad\left\{E_{n}^{(2)}(f)\right\}^{2}=\sum_{k=n}^{\infty}\left|a_{k}\right|^{2}
$$

We write $\Delta \lambda_{n}=\lambda_{n}-\lambda_{n-1}$
((2.2)

$$
\begin{gather*}
g(k, t)=\frac{2}{\pi} \frac{1}{k(k+1)} \sum_{v=1}^{k} \frac{v}{(n+v)}(n \tag{2.1}\\
+v)^{v-\beta} \frac{\Omega(t)}{t^{2}}
\end{gather*}
$$

$$
\begin{gathered}
J(k, u)=\frac{1}{F(1-\beta)} \int_{u}^{\pi} \frac{d}{d t} g(k, t)(t \\
-u)^{-\beta} d t \\
\omega(k, u)=u^{v} J(k, u) \\
{[x]=\text { greatest integer not exceeding } x}
\end{gathered}
$$

$$
U=\left[\frac{1}{u}\right] \text { and } \tau=\left[\frac{1}{t}\right]
$$

II. INTRODUTION

Ul'yanov [7] has proved the following theorems on $|C, \alpha|$ summability.

Theorem A:

If $1 \geq \alpha \geq \frac{1}{2}$ and $\sum_{n=n_{0}}^{\infty}\left|a_{n}\right|^{2} \log _{n}(\log \log n)^{1+\varepsilon}$ converges, then the series $\sum_{n=1}^{\infty} a_{n} \phi_{n}(x)$ is summable $|C, \alpha|$ almost everywhere.

Theorem B:

If $0<\alpha<\frac{1}{2}$ and $\sum_{n=n_{0}}^{\infty}\left|a_{n}\right|^{2} n^{1-2 \alpha} \log _{n}(\log n)^{1+\varepsilon}$ converges, then the series $\sum_{n=1}^{\infty} a_{n} \phi_{n}(x)$ is summable $|C, \alpha|$ almost everywhere.

Theorem C:

If $1 \geq \alpha \geq \frac{1}{2}$ and $\sum_{n=n_{0}}^{\infty} n^{-1}(\log \log n)^{1+\varepsilon}\left\{E_{n}^{(2)}(f)\right\}^{2}$ converges, then the series $\sum_{n=1}^{\infty} a_{n} \phi_{n}(x)$ is summable $|C, \alpha|$ almost everywhere.

Theorem D:

$$
\text { If } \quad 0<\alpha<\frac{1}{2} \quad \text { and } \quad \sum_{n=n_{0}}^{\infty}
$$

$n^{-2 \alpha} \log _{\mathrm{n}}(\log \log n)^{1+\varepsilon}\left\{E_{n}^{(2)}(f)\right\}^{2}$ converges, then the series $\sum_{n=1}^{\infty} a_{n} \phi_{n}(x)$ is summable $|C, \alpha| \quad$ almost everywhere.

Generalizing the above theorems Okuyama [6] has proved the following theorem for $\left|N, p_{n}\right|$ summability of orthogonal series.

Theorem E:

Let $\{\Omega(n)\}$ be a positive sequence such that $\left\{\frac{\Omega(n)}{n}\right\}$ is a non-increasing sequence and the series $\sum_{n=1}^{\infty} \frac{1}{n \Omega(\mathrm{n})}$ converges. Let $\left\{p_{n}\right\}$ be non-negative and non-increasing. If the series $\sum_{n=1}^{\infty}\left|a_{n}\right|^{2} \Omega(n) w_{n}$ converges, then the orthogonal series $\sum_{n=1}^{\infty} a_{n} \phi_{n}(x)$ is summable $\left|N, p_{n}\right|$ almost everywhere. Where

$$
\omega_{k}=\frac{1}{k} \sum_{n=k}^{\infty} \frac{n^{2} p_{n}^{2}-p_{n-k}^{2}}{p_{n}^{\Delta}}\left(\frac{P_{n}}{p_{n}}-\frac{P_{n-k}}{p_{n-k}}\right)^{2}
$$

The main object of this paper is to generalize Theorem E , for orthogonal series of absolute Banach summability. We establish our result in the form of following theorem

Theorem:

Let $\{\Omega(n)\}$ be a positive sequence such that $\left\{\frac{\Omega(n)}{n}\right\}$ is a non-increasing sequence and the series $\sum_{n=1}^{\infty} \frac{1}{n \Omega(\mathrm{n})}$ converges and

$$
\int_{0}^{\pi} \frac{d \phi_{n}(t)}{t^{v}}<\infty
$$

then the orthogonal series $\sum_{n=1}^{\infty} a_{n} \phi_{n}(x)$ is $|B|$ summable at $t=x$, provided

$$
\begin{equation*}
\sum_{k} k^{\beta-1}(n+k)=O(n \Omega(n)) \tag{3.1}
\end{equation*}
$$

Where $0<\beta<\gamma<1$.

III. PROOF OF THE THEOREM:

In order to prove the theorem, we have to prove that

$$
\sum_{k=1}^{\infty}\left|t_{k}(n)-t_{k+1}(n)\right|=O(1)
$$

Now taking,

$$
=\int_{0}^{\pi} \omega(k, u) \frac{d \phi_{\beta}(u)}{u^{v}}
$$

This completes the proof of the theorem.
Now,
$\sum_{k=1}^{\infty}\left|t_{k}(n)-t_{k+1}(n)\right|=\int_{0}^{u} \sum_{k=1}^{\infty}|\omega(k, u)| \frac{d \phi_{\beta}(u)}{u^{v}}$ since

$$
\begin{aligned}
& \int_{0}^{\pi} \frac{d \phi_{\beta}(u)}{u^{v}} \quad \begin{array}{l}
\text { then the theorem } \\
\text { is proved }
\end{array} \\
& \sum_{k=\infty,}^{\infty}|\omega(k, u)| \\
& <\infty, \quad \text { uniformly for all }
\end{aligned}
$$

Now,
$\sum_{k=1}^{\infty}|\omega(k, u)|=\sum_{k \leq \frac{1}{u}}|\omega(k, u)|+\sum_{k>\frac{1}{u}}|\omega(k, u)|$

IV. REFERENCES

[1] Banach, S., Theoric dis operations Lineairs monograffe, Malematyezne, Warsaw (1932).
[2] Bosanquet, L.S. and Hyslop, J.M., On the absolute summability of the allied series of the Fourier series, Mathematics Zeitsehrift, 42(1937), 489-512.
[3] Hardy, G.H., Divergent Series, Oxford University Press, Oxford, (1949).
[4] Lal, S.N., On the Absolute Nörlund summability of Fourier Series, Indian Journal of Mathematics, 9(1967), 151-161.

$$
\begin{aligned}
& t_{k}(n)-t_{k+1}(n)=\frac{1}{k(k+1)} \sum_{v=1}^{k} v(n+v)^{\gamma-\beta} \phi_{n+v}(t)=\sum_{1}+\sum_{2} \\
& =\frac{1}{k(k+1)} \sum_{v=1}^{k} v(n+v)^{\gamma-\beta} \frac{2}{\pi} \int_{0}^{\pi} \frac{\phi_{n}(t) \Omega(t)}{t} d t \\
& =t \frac{1}{k(k+1)} \sum_{v=1}^{k} \frac{v}{(n+v)}(n \\
& \begin{array}{l}
+v)^{\gamma-\beta} \frac{2}{\pi} \int_{0}^{\pi} \phi_{n}(t) \\
+1) \sum_{v=1}^{k} \frac{v}{(n+v)}(n
\end{array} \\
& \left.+v)^{\gamma-\beta} \frac{\Omega(t)}{t^{2}}\right] d t \\
& =\int_{0}^{\pi} \phi_{n}(t)\left[\frac{2}{\pi} \frac{1}{k(k+1)} \sum_{v=1}^{k} \frac{v}{(n+v)}(n\right. \\
& \begin{array}{l}
0<\beta<\gamma<1 \Rightarrow 0<r-\beta<1=\sum_{k>\frac{1}{u}} O\left(\frac{u^{v} k^{\beta-1}(n+k)^{\sigma} n \Omega(n)}{(k+1)}\right) \\
d t
\end{array} \\
& =\int_{0}^{\pi} \phi_{n}(t) \frac{d}{d t} g(k, t) d t \\
& =\int_{0}^{\pi} \frac{d}{d t} g(k, t)\left\{\frac{1}{\Gamma(1-\beta)} \int_{0}^{t}(t-u)^{-\beta} d \phi_{\beta}(u)\right\} d t \\
& =\frac{1}{\Gamma(1-\beta)} \int_{0}^{\pi} d \phi_{\beta}(u) \int_{u}^{\pi} \frac{d}{d t} g(k, t)(t-u)^{\beta} d t \\
& =\int_{0}^{\pi} d \phi_{\beta}(u)\left\{\frac{1}{\Gamma(1-\beta)} \int_{u}^{\pi} \frac{d}{d t} g(k, t)(t-u)^{\beta} d t\right\} \\
& =\int_{0}^{\pi} J(u, u) d \phi_{\beta}(u) \\
& =\int_{0}^{\pi} u^{v} J(k, k) \frac{d \phi_{\beta}(u)}{u^{v}} \\
& =O\left(u^{v}\right) O(n \Omega(n))=O(1) \text { Using (3.1). } \\
& \text { Again, } \\
& \sum_{2}=\sum_{k>\frac{1}{u}} \omega(k, u) \\
& =\sum_{k>\frac{1}{u}} O\left(\frac{u^{v} k^{\beta-1}(n+k)^{\sigma} n \Omega(n)}{(k+1)}\right) \\
& \leq O\left(u^{v}\right) \sum_{k>\frac{1}{u}} \frac{u^{v} k^{\beta-1}(n+k)^{\sigma} n \Omega(n)}{k} \\
& \leq O\left(u^{v}\right) \sum_{k>\frac{1}{u}} k^{\beta-1} \frac{(n+k)^{\sigma} k}{k} n \Omega(n) \\
& =O\left(u^{v}\right) \sum_{k>\frac{1}{u}} k^{\beta-1}(n+k)^{\sigma} n \Omega(n) \\
& =O\left(u^{v}\right) O(n \Omega(n))=O(1)
\end{aligned}
$$

[5] Leinder, L., Überstrukturbe dingungen für Fourierahen, Math, Zeitsner's 88(1965), 418-431.
[6] Paikray,S.K., Misra,U.K. and Sahoo,N.C., Absolute banach summability of a factored Fourier series IJRRAS (2011),3-7.
[7] Okuyama, Y., On the Absolute Nörlund summability of orthogonal series, proc., Japan Academy, Vol. 54, Ser A. No. 5, (1978), 113-118.
[8] Ul'yanov, P.L., Solved and unsolved problem in the theory of trigonometric and orthogonal series, Uspehi, Math., nauk (1964), 3-69.
[9] Zygmund, A., Trigonometric series vol I and II (IInd), Cambridge University Press, Cambridge (1959).

