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ABSTRACT 
 

In this paper we have proved a theorem on “Orthogonal Series’of Absolute Banach Summability” which generalizes 

known result. However our theorem is as follows. 
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I. DEFINITIONS AND NOTATIONS 

 

1. Let *  + be the sequence of partial sums of a series 

∑  . Let the sequence  1)( knkt  is defined by 
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Uniformly for all    , then ∑   is said to be Banach 

summability to  . 

Further if,  
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Uniformly for all    , then the series ∑   is said to 

be absolute Banach summable or simply 

    summable.  
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II. INTRODUTION 

 

Ul’yanov , -  has proved the following theorems on 

      summability. 
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2
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Theorem C:  
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Theorem D: 
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Generalizing the above theorems Okuyama , -  has 

proved the following theorem for        summability of 

orthogonal series. 

Theorem E: 

Let * ( )+ be a positive sequence such that {
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The main object of this paper is to generalize Theorem 

E, for orthogonal series of absolute Banach summability. 

We establish our result in the form of following theorem 

 

Theorem:  

Let * ( )+ be a positive sequence such that {
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III. PROOF OF THE THEOREM: 
 

In order to prove the theorem, we have to prove that 
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This completes the proof of the theorem. 
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